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Terminology

1. Model predictive control (MPC): MPC is a control method that involves using a

mathematical model of the system to predict its future behavior and generate control

inputs that optimize a predefined objective.

2. Nonlinear systems: Nonlinear systems are systems whose behavior cannot be described

by linear equations. Nonlinear systems may exhibit complex and unpredictable behavior,

and they require special techniques for modeling and control. Nonlinear systems can be

found in a wide range of applications, including mechanical, electrical, and biological

systems. Examples of nonlinear systems include systems with nonlinear dynamics, such

as pendulums and springs, and systems with nonlinear constraints, such as robots and

autonomous vehicles operating in cluttered environments.

3. Optimization: Optimization refers to the process of finding the optimal solution to a

problem, typically by minimizing or maximizing a predefined objective function subject to

constraints. Optimization is a key component of MPC, as it is used to determine the

control inputs that optimize the performance of the system.

4. Dynamic programming: Dynamic programming is an optimization technique that involves

breaking down a complex problem into smaller subproblems and solving each

subproblem independently. Dynamic programming is often used in NMPC to solve the

optimization problem over a finite horizon.

5. Trajectory optimization: Trajectory optimization is the process of finding a trajectory that

minimizes a predefined objective, such as energy consumption or time to reach a goal,

subject to constraints such as dynamic feasibility and collision avoidance. Trajectory

optimization is often used in NMPC to find the optimal control inputs for the system.

6. Receding horizon control: Receding horizon control is a control strategy that involves

solving the optimization problem over a finite horizon and applying the optimal control

inputs for the current time step, while discarding the future control inputs and re-solving

the optimization problem for the next time step. This process is repeated at each time

step, resulting in a rolling optimization horizon. Receding horizon control is often used in

NMPC to balance the trade-off between computational complexity and optimality.

7. Collision avoidance: Collision avoidance refers to the ability of a system, such as an

autonomous vehicle or robot, to detect and avoid collisions with obstacles or other

objects in the environment. Collision avoidance systems may use sensors, such as



cameras, lidars, and radars, to perceive the environment and detect potential collisions,

and algorithms to generate appropriate responses to avoid the collision. A different type

of collision avoidance is reactive collision avoidance. Reactive collision avoidance refers

to the ability of a system, such as an autonomous vehicle or robot, to detect and respond

to potential collisions with obstacles or other objects in the environment in real-time.

Reactive collision avoidance systems are designed to respond quickly to the presence of

obstacles, avoiding collisions by changing the system's trajectory or velocity. Reactive

collision avoidance is often used in systems that operate in dynamic environments,

where the presence of obstacles or other objects may change rapidly. These systems

are designed to respond to the changing environment in real-time, avoiding collisions

and ensuring the safety of the system and its surroundings.

8. Motion planning: Motion planning refers to the process of generating a feasible and

dynamically feasible trajectory for a system to follow, taking into account the system's

dynamics, constraints, and the presence of obstacles in the environment. Motion

planning algorithms may be used in conjunction with collision avoidance systems to

enable the system to navigate through the environment while avoiding collisions.

9. Path planning: Path planning refers to the process of generating a path for a system to

follow between two points, taking into account the system's dynamics, constraints, and

the presence of obstacles in the environment. Path planning algorithms may be used in

conjunction with collision avoidance systems to enable the system to navigate between

two points while avoiding collisions.

10. Obstacle avoidance: Obstacle avoidance refers to the ability of a system to avoid

collisions with obstacles in the environment. Obstacle avoidance systems may use

sensors and algorithms to detect and avoid obstacles in real-time, enabling the system

to navigate through the environment safely.

11. Trajectory tracking: Trajectory tracking refers to the ability of a system to follow a

predetermined trajectory, taking into account the system's dynamics and constraints.

Trajectory tracking algorithms may be used in conjunction with collision avoidance

systems to enable the system to follow a predetermined trajectory while avoiding

collisions.

12. Feasibility: Feasibility refers to the ability of a system to follow a trajectory without

violating its dynamic constraints, such as maximum acceleration and velocity. Feasibility

is an important consideration in collision avoidance and motion planning, as the system

must be able to follow the trajectory without violating its constraints. Dynamic feasibility



refers to the ability of a system to follow a trajectory without violating its dynamic

constraints and without causing instability or other undesirable behavior. Dynamic

feasibility is an important consideration in collision avoidance and motion planning, as

the system must be able to follow the trajectory safely and reliably.



Introduction

This addresses the problem of collision avoidance and trajectory generation for multiple micro

aerial vehicles (MAVs) operating in dynamic environments. Previous work in this field has

focused on using different approaches to enable the MAVs to navigate and generate feasible

trajectories. However, these approaches are limited in their ability to handle nonlinear dynamics

and constraints, and to generate dynamically feasible trajectories in complex environments.

The thesis proposes the use of nonlinear model predictive control (NMPC) to address these

limitations. NMPC is a control approach that involves solving an optimization problem at each

time step to generate a control input that minimizes a cost function subject to system dynamics

and constraints. The NMPC approach is able to handle nonlinear dynamics and constraints and

to generate dynamically feasible trajectories, making it well-suited for collision avoidance and

trajectory generation in dynamic environments.

In this work, the author apply NMPC to a single-MAV scenario, where the MAV is required to

navigate through a dynamic environment and avoid collisions with each other and with

obstacles. The NMPC approach is used to generate control inputs that minimize a cost function

that includes terms for tracking a reference trajectory, avoiding collisions, and satisfying dynamic

constraints. Overall, this work represents a significant improvement over previous approaches

for collision avoidance and trajectory generation for MAVs operating in dynamic environments.

The use of NMPC enables the MAVs to handle nonlinear dynamics and constraints and to

generate dynamically feasible trajectories, improving their performance and safety in complex

environments.



Literature Review

The trajectory generation and navigation on MAVs is an age-old problem. Many researchers

have used different techniques to solve them.

The "The grasp multiple micro-UAV testbed" by Michael et al describes the use of an external

motion capture system to evaluate the performance of control algorithms for multiple

micro-unmanned aerial vehicles (micro-UAVs). The motion capture system consists of a set of

cameras and markers that are used to track the position and orientation of the micro-UAVs in

real-time. The system is able to provide high-accuracy measurements of the micro-UAVs'

positions and orientations, allowing researchers to accurately assess the performance of the

control algorithms. The motion capture system is used to track the micro-UAVs' positions and

orientations as they perform the tasks, and the data is used to evaluate the performance of the

control algorithms. The motion capture system is described as a valuable tool for evaluating the

performance of control algorithms for micro-UAVs, as it allows researchers to accurately assess

the micro-UAVs' positions and orientations in real-time. The system is able to provide

high-accuracy measurements of the micro-UAVs' positions and orientations, which is essential

for accurately evaluating the performance of the control algorithms.

"Real-time visual-inertial mapping, re-localization and planning onboard MAVs in
unknown environments" by Burri et al describes the use of on-board sensing for trajectory

generation in micro-unmanned aerial vehicles (MAVs). The on-board sensing consists of a set of

sensors, including cameras, inertial measurement units (IMUs), and lidars, which are used to

perceive the environment and generate a map of the surroundings. The sensors are mounted

on the MAV and provide real-time data about the MAV's position, orientation, and the layout of

the environment. The on-board sensing is used to enable the MAV to navigate and plan its

trajectory in unknown environments. The data from the sensors is used to generate a map of

the environment and to perform real-time re-localization, which allows the MAV to determine its

position within the map. The map and the MAV's position are then used to generate a feasible

and dynamically feasible trajectory for the MAV to follow, using a motion planning algorithm. The

literature describes the use of the on-board sensing and the motion planning algorithm to enable

the MAV to navigate and plan its trajectory in unknown environments, such as forests and urban

areas. The results of the experiments show that the MAV is able to generate feasible and



dynamically feasible trajectories and to navigate through the environment while avoiding

obstacles and satisfying constraints.

“Real-time motion planning for agile autonomous vehicles" by Frazzoli et al literature

describes the use of sampling-based techniques for generating collision-free trajectories for

autonomous vehicles. Sampling-based techniques are a class of algorithms that generate

candidate trajectories by sampling the state space of the system. The candidate trajectories are

then evaluated based on a set of criteria, such as collision avoidance, feasibility, and dynamic

feasibility, and the best trajectory is selected. The literature describes the use of sampling-based

techniques to generate collision-free trajectories for autonomous vehicles operating in complex,

dynamic environments. The techniques are based on the Rapidly-exploring Random Trees

(RRT) algorithm, which generates a tree structure by sampling the state space and connecting

the samples using straight-line trajectories. The tree is then used to generate a set of candidate

trajectories, which are evaluated based on the collision avoidance and feasibility criteria. The

sampling-based techniques are described as being particularly useful for generating

collision-free trajectories in complex, dynamic environments, as they are able to handle

nonlinear dynamics and constraints and to generate feasible and dynamically feasible

trajectories. The techniques are also able to generate trajectories in real-time, making them

suitable for use in practical applications.

A decentralized solution to a mixed integer quadratic problem is another technique to construct

collision-free trajectories for a group of robots. Such solution is described in "Towards a swarm
of agile micro quadrotors." by Kushleyev et al describes the use of integer quadratic

programming (IQP) to generate collision-free trajectories for a group of micro quadrotors. IQP is

a type of optimization problem that involves finding a solution that minimizes a quadratic

objective function subject to linear constraints, where some of the variables are integers. In the

literature, the same is used to generate collision-free trajectories for the micro quadrotors by

minimizing a cost function that includes terms for collision avoidance and trajectory tracking.

The cost function is based on a potential field approach, which defines a virtual potential field

around the quadrotors and the obstacles in the environment. The quadrotors are attracted to the

desired trajectory and repelled from the obstacles, and the cost function is minimized to find a

trajectory that avoids the obstacles while following the desired trajectory. The IQP problem is

solved using an integer quadratic programming solver, which finds the optimal solution to the

problem subject to the linear constraints. The resulting trajectory is then used to guide the

quadrotors through the environment while avoiding obstacles and satisfying constraints.



A similar approach is also used by the researchers where sequential quadratic programming is

employed. The literature "Generation of collision-free trajectories for a quadrocopter fleet:
A sequential convex programming approach" describes the use of sequential quadratic

programming (SQP) techniques to generate collision-free trajectories for a team of

micro-unmanned aerial vehicles (MAVs). SQP is a type of optimization algorithm that iteratively

solves a sequence of quadratic programming problems to find the optimal solution to a

nonlinear optimization problem. In this case, the objective of the optimization problem is to

generate collision-free trajectories for the MAVs that are feasible and dynamically feasible, while

also satisfying constraints such as velocity limits and mission requirements. To generate the

trajectories, the literature proposes a two-stage approach that combines a global planner and a

local planner. The global planner is responsible for generating a high-level plan that defines the

desired positions and orientations of the MAVs at each time step. The local planner then uses

SQP to generate the collision-free trajectories that connect the desired positions and

orientations, taking into account the MAVs' dynamics and the positions of the other MAVs and

obstacles in the environment. The literature presents several experimental results that

demonstrate the effectiveness of the proposed approach in generating collision-free trajectories

for a team of MAVs operating in complex environments.

The aforementioned strategies don't work in real-time and do not account for environmental

changes. The robot team's flexibility is constrained by global collision-free trajectory creation

techniques. The tasks allocated to individual agents in real-world missions with several agents

working together may and often do change in real-time, making it necessary to use reactive
local trajectory planning techniques.

In the literature "Decentralized nonlinear model predictive control of multiple flying
robots," the authors propose a decentralized nonlinear model predictive control (NMPC)

approach for achieving reactive collision avoidance for a team of multiple flying robots, or MAVs.

The decentralized NMPC approach involves dividing the control of the MAVs among multiple

decentralized controllers, each responsible for the control of a single MAV. Each controller

computes a control input for its respective MAV based on its local state and the predicted states

of the other MAVs in the team. The controllers use a nonlinear optimization algorithm to

compute the control input that minimizes a cost function, which includes terms that penalize

deviations from a desired trajectory and terms that encourage collision avoidance. To achieve

reactive collision avoidance, the controllers continuously update the control inputs of the MAVs

based on the predicted states of the other MAVs in the team. This allows the MAVs to respond



in real time to changes in the positions and trajectories of the other MAVs and to avoid potential

collisions. The decentralized NMPC approach is able to handle nonlinear dynamics and

constraints and to generate feasible and dynamically feasible trajectories for the MAVs. The

authors demonstrate the effectiveness of the decentralized NMPC approach through simulations

and experiments with a team of four MAVs operating in a cluttered environment. The results

show that the MAVs are able to navigate through the environment while avoiding obstacles and

satisfying constraints, and that the decentralized NMPC approach is able to effectively

coordinate the motion of the MAVs to achieve collision avoidance.

However, for better handling uncertain and time-varying parameters, such as the MAVs'

dynamics and the positions of the obstacles in the environment. "Nonlinear Model Predictive
Control for Multi-Micro Aerial Vehicle Robust Collision Avoidance" is a literature that

presents a nonlinear model predictive control (NMPC) approach for collision avoidance in

multi-micro aerial vehicles (MAVs). The control approach is designed to enable the MAVs to

follow desired trajectories while avoiding obstacles and satisfying constraints. In the NMPC

approach presented in the literature, the control inputs for the MAVs are optimized over a finite

horizon using a receding horizon control strategy. The optimization is based on a cost function

that includes a tracking term to ensure that the MAVs follow the desired trajectories, and a

collision avoidance term to ensure that the MAVs avoid obstacles. The optimization is performed

using a nonlinear optimization algorithm, such as the Sequential Least Squares Programming

(SLSQP) algorithm.

To generate feasible and dynamically feasible trajectories for the MAVs to follow, the literature

proposes a sampling-based motion planning algorithm. The algorithm samples the state space

of the MAVs to generate a set of candidate trajectories and then selects the trajectory that

minimizes the collision avoidance cost while satisfying the constraints of the system.

The performance of the control approach is demonstrated through simulation results, which

show that the MAVs are able to follow the desired trajectories while avoiding obstacles and

satisfying constraints. The results also show that the NMPC approach is able to achieve

real-time performance, with computation times that are fast enough for use in practical

applications.



Problem Formulation

Consider an aerial vehicle (MAV) system and m dynamic obstacles in a 2D environment. Each

MAV is modeled as a point with a radius r and has a state vector xᵢ = [pᵢₓ, pᵢᵧ, vᵢₓ, vᵢᵧ]^T,

where pᵢₓ and pᵢᵧ denote the x and y coordinates of the MAV's position, and vᵢₓ and vᵢᵧ denote

the x and y components of the MAV's velocity. The system is subject to the following constraints:

Collision avoidance: For each MAV i and each obstacle j, the distance between the MAV and the

obstacle must be greater than or equal to a minimum safety distance d ᵢ :

|| pᵢ - p  || >= d ᵢ

Velocity constraints: Each MAV must satisfy a minimum and maximum velocity constraint:

v ᵢ  <= || vᵢ || <= v ₐₓ

Position constraints: Each MAV must remain within a bounded region in the 2D environment:

p ᵢ  <= pᵢ <= p ₐₓ

The goal of the NMPC controller is to compute a sequence of control inputs

uᵢ = [aᵢₓ, aᵢᵧ]^T for each MAV such that the MAVs follow desired trajectories while satisfying

the above constraints.



Controller Formulation

Dynamic Model

The dynamic model takes into account the physical properties, such as its mass, inertia, and

aerodynamic coefficients, as well as the external forces and moments acting on the MAV, such

as gravity, thrust, and drag.

The dynamic model is typically represented by a set of differential equations, which describe

how the state variables of the MAV (such as its position, velocity, and orientation) change over

time in response to the forces and moments applied to it. These equations can be derived from

the principles of mechanics and kinematics, and they are used to predict the behavior of the

MAV under different conditions.

The equations of motion for a MAV in three-dimensional space can be written as follows:

Newton's second law of motion:
F = ma

where F is the total force acting on the MAV, m is the mass of the MAV, and a is the acceleration

of the MAV.

Euler's equations of motion:
I * 𝝰 = L

where I is the inertia matrix, 𝝰 is the angular acceleration, and L is the total moment applied to

the MAV.

These equations describe how the MAV will behave in response to the forces and moments

applied to it. By solving these equations for a given set of initial conditions and control inputs, it

is possible to determine the position, velocity, and orientation of the MAV at any time.



The dynamic model of the MAV is an important component of the controller formulation for the

MAV collision avoidance system, as it enables the controller to anticipate the future behavior of

the MAV and the other objects in the environment, and to make decisions based on this

information.



Prediction Model

The prediction model uses the above equations of motion to predict the future behavior of the

MAV and the other objects in the environment. Specifically, the prediction model estimates the

future positions and velocities of the MAV and the other objects based on their current state and

the inputs applied. This prediction can be made using techniques such as numerical integration,

which involves approximating the derivative of the state variables over time and using this

information to update the state.

The prediction model uses numerical integration to estimate the future positions and velocities

of the MAV and the other objects based on their current state and the inputs applied to them.

Numerical integration involves approximating the derivative of the state variables over time and

using this information to update the state variables at each time step. For example, if the current

state of the MAV is given by its position (p), velocity (v), and orientation (q), and the control

inputs applied to it are given by the thrust (u1) and moment (u2) applied to the MAV, the

prediction model can be used to estimate the future position, velocity, and orientation of the

MAV at a future time t by integrating the equations of motion over time as follows:

Integration of Newton's second law of motion:
p(t+dt) = p(t) + v(t) * dt + 0.5 * a(t) * dt

v(t+dt) = v(t) + a(t) * dt

where dt is the time step, and a(t) can be calculated from the equation F = ma.

Integration of Euler's equations of motion:
q(t+dt) = q(t) + w(t) * dt + 0.5 * 𝝰(t) * dt²

w(t+dt) = w(t) + 𝝰(t) * dt

where w(t) is the angular velocity of the MAV, and 𝝰(t) can be calculated from the equation

I * 𝝰 = L.



For example, if the MAV is initially at position p0, with velocity v0 and orientation q0, and if the

control inputs applied to it are given by the thrust u1 and moment u2, the position, velocity, and

orientation of the MAV at any time t can be calculated as follows:

Position:

p(t) = p0 + ∫(v(t), t=0..t)

where the integral represents the integration of the velocity over time.

Velocity:

v(t) = v0 + ∫(a(t), t=0..t)

where a(t) is calculated from the equation F = ma.

Orientation:

q(t) = q0 + ∫(w(t), t=0..t)

where w(t) is the angular velocity of the MAV, and the integral represents the integration of the

angular velocity over time.

The prediction model can be used to predict the future behavior of the MAV and the other

objects over a certain time horizon, by repeatedly integrating the equations of motion at each

time step. For example, if the prediction model is used to predict the behavior of the MAV over a

time horizon of T seconds, with a time step of dt seconds, the prediction model would integrate

the equations of motion T/dt times, starting from the current state of the MAV and the other

objects.



Objective Function

The objective function is a mathematical function that is used to define the optimization problem

that is solved by the controller to find the optimal control inputs. The optimization problem is

used to find the control inputs that minimize the objective function while satisfying the

constraints on the system.

The objective function typically includes terms that reflect the deviation of the vehicle from its

desired reference or setpoint, as well as terms that reflect the safety and feasibility of the control

inputs applied to it.

The objective function can be written in the form of a cost function, which is a mathematical

function that assigns a cost or penalty to each possible combination of control inputs and

system states. The cost function is used to evaluate the performance of the MAV and the control

inputs applied to it, and can be minimized to find the optimal control inputs that achieve the

desired reference or setpoint while satisfying the constraints on the system.

The cost function for the MAV collision avoidance system can be written as follows:

J = ∑(C(x(k), u(k)) + C(x(k+1), u(k+1)) + ... + C(x(k+N-1),

u(k+N-1)))

where J is the cost function, x(k) is the state of the MAV at time k, u(k) is the control input

applied to the MAV at time k, C(x(k), u(k)) is the cost associated with the state x(k) and

the control input u(k), and N is the time horizon over which the cost function is evaluated.

The cost function C(x(k), u(k)) can be written as a combination of different terms that

reflect the ideas presented above.

In the case of the MAV collision avoidance system, the objective function includes three terms

such as:



A term that reflects the deviation of the MAV from its desired position, velocity, and

orientation:

C1 =(x(k) - xref(k))²

where xref(k) are the desired position at time k, and x(k)are the actual positionof the MAV

at time k.

A term that reflects the deviation of the control inputs applied to the MAV from their

nominal values:

C2 = ∑((u1(k) - u1nom)² + (u2(k) - u2nom)²)

where u1nom and u2nom are the nominal values of the thrust and moment applied to the MAV,

and u1(k) and u2(k) are the actual values of the thrust and moment applied to the MAV at

time k.

A term that reflects the safety of the vehicle, such as a term that penalizes the MAV for

coming too close to other objects in the environment:

C3 = ∑ 𝑄𝑐
1 + 𝑒𝑥𝑝 𝚱( 𝑑(𝑘) − 𝑑𝑚𝑖𝑛))

where d(k) is the distance of the MAV from obstacles in the environment at time k, and dmin

is the minimum safe distance between the MAV and the other objects. 𝚱 represents kappa,

which acts as a hyperparameter for the same.

The objective function can be written as a combination of these different terms, such as:

J = sum(C1 + C2 + C3)

The objective function is minimized by the controller to find the optimal control inputs that

achieve the desired reference or setpoint while satisfying the constraints on the system.



Control Inputs

The control inputs are the variables that are used to control the behavior of the robot. The

control inputs are applied to the MAV through its actuators, such as its motors and control

surfaces, and are used to control the position, velocity, and orientation.

The control inputs for the vehicle collision avoidance system are typically chosen to reflect the

goals and priorities of the system, and may be adjusted to suit different scenarios and operating

conditions. In the case of the MAV collision avoidance system, the control inputs are not often

defined and heavily depend on practical scenarios but usually include:

The thrust applied to the MAV:
u1(k) = F(k)

where u1(k) is the thrust applied to the MAV at time k, and F(k) is the force applied to the

MAV at time k. The thrust applied to the MAV is used to control its position and velocity, and can

be adjusted to suit different scenarios and operating conditions.

The moment applied to the MAV:
u2(k) = M(k)

where u2(k) is the moment applied to the MAV at time k, and M(k) is the moment applied to

the MAV at time k. The moment applied to the MAV is used to control its orientation, and can be

adjusted to suit different scenarios and operating conditions.

Constraints

Collision avoidance: For each MAV i and each obstacle j, the distance between the MAV and the

obstacle must be greater than or equal to a minimum safety distance d ᵢ :

|| pᵢ - p  || >= d ᵢ



Velocity constraints: Each MAV must satisfy a minimum and maximum velocity constraint:

v ᵢ  <= || vᵢ || <= v ₐₓ

Position constraints: Each MAV must remain within a bounded region in the 2D environment:

p ᵢ  <= pᵢ <= p ₐₓ



Algorithm

The code prepared is an implementation of a Nonlinear Model Predictive Control (NMPC)

algorithm for collision avoidance in single-micro aerial vehicles (MAVs). NMPC is a control

technique that involves predicting the future behavior of a system and choosing the optimal

control inputs at each time step to optimize some objective function.

Here, the objective function is the sum of two terms: a tracking cost term and a collision cost

term. The tracking cost term ensures that the MAV follows a desired reference trajectory. The

collision cost term ensures that the MAV avoids colliding with other objects, which are

represented as obstacles in the code.

List of variables

SIM_TIME: a float representing the total simulation time.

TIMESTEP: a float representing the timestep duration.

NUMBER_OF_TIMESTEPS: an integer representing the number of timesteps in the simulation. It

is calculated by dividing SIM_TIME by TIMESTEP.

ROBOT_RADIUS: a float representing the radius of the robot.

VMAX: a float representing the maximum velocity of the robot.

VMIN: a float representing the minimum velocity of the robot.

Qc: a float representing a collision cost parameter.

kappa: a float representing a collision cost parameter.

HORIZON_LENGTH: an integer representing the horizon length for the Nonlinear Model

Predictive Control (NMPC) algorithm.

NMPC_TIMESTEP: a float representing the timestep duration for the NMPC algorithm.

upper_bound: a numpy array representing the upper bounds for the control input for the

NMPC algorithm. It has shape (2*HORIZON_LENGTH,) and is calculated by multiplying VMAX by

the square root of 2.

lower_bound: a numpy array representing the lower bounds for the control input for the

NMPC algorithm. It has the same shape and value as upper_bound, but with a negative sign.



Control Structure of Algorithm

1. Import the necessary libraries and functions.

2. Define the constants and variables needed for the simulation, including SIM_TIME,

TIMESTEP, NUMBER_OF_TIMESTEPS, ROBOT_RADIUS, VMAX, VMIN, Qc,

kappa, HORIZON_LENGTH, NMPC_TIMESTEP, upper_bound, and

lower_bound.

3. Define the simulate(filename) function.

4. Inside the simulate(filename) function, call the create_obstacles function to

generate the positions of the obstacles over time and store the result in a variable

obstacles.

5. Initialize the starting position of the robot and the desired final position as numpy arrays.

6. Initialize an empty array to store the history of the robot's state.

7. For each timestep in the simulation:

a. Call the predict_obstacle_positions function to predict the positions of

the obstacles in the future and store the result in a variable

obstacle_predictions.

b. Call the compute_xref function to compute the reference trajectory for the

robot and store the result in a variable xref.

c. Call the compute_velocity function to compute the control input for the robot

to minimize the total cost and store the result in a variable vel.

d. Call the update_state

simulate

The simulate function simulates the motion of a micro aerial vehicle (MAV) over a certain time

period while avoiding collisions with obstacles. The simulation is performed by iterating over a

series of time steps and computing the control inputs for the MAV at each time step.

At the beginning of the function, create_obstacles is called to generate the positions of

obstacles for the duration of the simulation. Then, the starting position of the MAV and the

desired position of the MAV are set.



create_robot

This function is nested in the create_obstacles function. The create_robot function

takes in five arguments:

p0: a numpy array of shape (2,) representing the initial position of the robot. The first element of

the array represents the x-coordinate, and the second element represents the y-coordinate.

v: a float representing the magnitude of the velocity of the robot. The velocity is a

two-dimensional vector, with the x-velocity and y-velocity being calculated using the theta angle.

theta: a float representing the angle of the velocity vector in radians. The x-velocity is

calculated as v * cos(theta), and the y-velocity is calculated as v * sin(theta).

sim_time: a float representing the length of the simulation in time units.

num_timesteps: an integer representing the number of timesteps in the simulation.

The function first creates a numpy array t with num_timesteps equally spaced values

between 0 and sim_time.

It then creates a numpy array theta with num_timesteps elements, all equal to the value of

theta.

It then calculates the x-velocity and y-velocity of the robot at each timestep using the theta array

and the magnitude of v. These velocities are stored in the vx and vy arrays, respectively.

The vx and vy arrays are then stacked together to create a two-dimensional velocity array v.

The initial position p0 is reshaped into a 2 x 1 array, and the velocity array v is cumulatively

summed along the second axis (also known as the "column" axis) to create the position array p.

This is done using the following equation:

p = p0 + np.cumsum(v, axis=1) * (sim_time / num_timesteps)

The position array p has the following form:



[[x0] [y0]]

[[x1] [y1]]

...

[[xn] [yn]]

Where x and y represent the x and y position of the robot at timestep n.

The position array p and the velocity array v are then stacked together using

np.concatenate, and the resulting array is returned. The returned array has the following

form:

[[[x0] [y0] [vx0] [vy0]]

[[x1] [y1] [vx1] [vy1]]

...

[[xn] [yn] [vxn] [vyn]]]

Where x and y represent the x and y position of the robot at timestep n, and vx and vy

represent the x and y velocity of the robot at timestep n. The returned array represents the

position and velocity of the robot at each timestep in the simulation.

create_obstacles

The create_obstacles function takes in two arguments:

sim_time: a float representing the length of the simulation in time units.

num_timesteps: an integer representing the number of timesteps in the simulation.

The function first calls the create_robot function with the arguments p0, v, theta,

sim_time, and num_timesteps. This creates an obstacle with an initial position of p0, a

velocity, and an angle of movement of theta radians.



It then reshapes the resulting array into a 4 x num_timesteps x 1 shape and assigns it to the

obst variable. The reshaped array has the following form:

[[[x0] [y0] [vx0] [vy0]]

[[x1] [y1] [vx1] [vy1]]

...

[[xn] [yn] [vxn] [vyn]]]

Where x and y represent the x and y position of the obstacle at timestep n, and vx and vy

represent the x and y velocity of the obstacle at timestep n. The resulting array represents the

position and velocity of the obstacle at each timestep in the simulation.

The obst array is then assigned to the obstacles variable.

The function then repeats this process for more obstacles, creating them using the

create_robot function and stacking them onto the obstacles array using np.dstack. The

np.dstack function stacks arrays along the third dimension (also known as the "depth"

dimension), so the resulting obstacles array has the following shape: 4 x num_timesteps x

<number of obstacles>, where the third dimension represents the number of obstacles.

Finally, the function returns the obstacles array.

A loop is then entered, in which the MAV's position is updated at each time step. Within the

loop, the positions of the obstacles in the future are predicted using the

predict_obstacle_positions function. The desired position of the MAV over the horizon

length (a certain number of time steps into the future) is computed using the compute_xref

function.

predict_obstacle_positions

The predict_obstacle_positions function takes in an array of obstacles and predicts

their positions at a future timestep.



The input obstacles is a 4 x num_timesteps x num_obstacles array, where the first two

dimensions represent the position and velocity of the obstacles at each timestep, and the third

dimension represents the different obstacles.

The function first creates a num_obstacles x 4 array obstacle_predictions filled with

zeros, which will be used to store the predicted positions of the obstacles.

It then iterates over each obstacle and predicts its position at the next timestep using the

following equation:

prediction = obstacle[:, -1] + obstacle[2:, -1] * NMPC_TIMESTEP

The prediction array has the form [x, y, vx, vy], where x and y represent the predicted x

and y position of the obstacle, and vx and vy represent the predicted x and y velocity of the

obstacle.

The prediction array is then stored in the corresponding row of the obstacle_predictions

array.

Finally, the function returns the obstacle_predictions array.

The obstacle_predictions array has the form num_obstacles x 4, where the first two

dimensions represent the predicted x and y position of the obstacles, and the last two

dimensions represent the predicted x and y velocity of the obstacles. This array can be used to

predict the future positions of the obstacles and to calculate the cost of collision between the

robot and the obstacles.

The control input for the MAV at the current time step is computed using the

compute_velocity function, which uses nonlinear model predictive control (NMPC) to find

the control input that minimizes a cost function. This cost function, defined in the total_cost

function, consists of two terms: a tracking cost that encourages the MAV to follow the desired

path, and a collision cost that penalizes the MAV for coming too close to obstacles.



compute_velocity

The compute_velocity function takes in three arguments:

robot_state: a numpy array of shape (4,) representing the current state of the robot. The

array has the form [x, y, vx, vy], where x and y represent the x and y position of the

robot, and vx and vy represent the x and y velocity of the robot.

obstacle_predictions: a num_obstacles x 4 array representing the predicted positions

and velocities of the obstacles. The array has the form [[x0, y0, vx0, vy0], [x1, y1,

vx1, vy1], ..., [xn, yn, vxn, vyn]], where x and y represent the predicted x and y

position of the obstacle, and vx and vy represent the predicted x and y velocity of the obstacle.

xref: a numpy array of shape (2 * HORIZON_LENGTH,) representing the reference path for the

robot to follow. The array has the form [x0, y0, x1, y1, ..., xn, yn], where x and y

represent the x and y position of the robot at each point in the reference path.

The function first generates a random initial guess u0 for the control input of the robot, which is

a numpy array of shape (2 * HORIZON_LENGTH,) with random values between -VMAX and

VMAX.

The cost_fn function is a nested function defined within the compute_velocity function. It

takes in a single argument u, which is a numpy array of shape (2*HORIZON_LENGTH,)

representing the control input for the robot. The function first uses the update_state function

to predict the state of the robot at the next timestep using the current state and the control input

u. The predicted state is stored in the x_robot array.

It then calculates the tracking cost of using the control input u by calling the tracking_cost

function and passing in the x_robot array and the reference path xref. The tracking cost is a

measure of how close the predicted state of the robot is to the reference path.

It then calculates the total collision cost of using the control input u by calling the

total_collision_cost function and passing in the x_robot array and the predicted



positions of the obstacles obstacle_predictions. The total collision cost is a measure of

the likelihood of the robot colliding with the obstacles.

The function then returns the sum of the tracking cost and the total collision cost as the total

cost of using the control input u. This total cost is used to optimize the control input for the robot.

After defining the cost_fn function, the compute_velocity function uses the

scipy.optimize.minimize function to minimize the cost function and find the optimal

control input for the robot.

It passes the cost_fn function as the first argument, and the initial guess u0 for the control

input as the second argument. It also specifies the optimization method to be used ('SLSQP')

and the bounds for the control input (lower_bound and upper_bound) using the Bounds

class.

The minimize function returns a OptimizeResult object containing the optimal control input

velocity and other optimization results. The velocity array has shape (2,) and represents the x

and y velocity of the robot at the next timestep.

The compute_velocity function then returns the optimal control input velocity and the entire

optimization result res.x as a tuple.

total_cost

The total_cost function is a helper function that calculates the total cost of a control input u

given the current robot state robot_state, the predicted positions of the obstacles in the

future obstacle_predictions, and the desired reference trajectory xref. The cost is

calculated as the sum of two terms:

The tracking cost, which measures the deviation of the robot's trajectory from the desired

reference trajectory xref. This is calculated using the tracking_cost function, which takes

in the robot's predicted trajectory x_robot (obtained by simulating the robot's motion given

the control input u and the current robot state robot_state) and the desired reference



trajectory xref as inputs, and returns the Euclidean norm of the difference between x_robot

and xref. The tracking cost is used to ensure that the robot follows the desired trajectory as

closely as possible.

The collision cost, which measures the risk of collision between the robot and the obstacles.

This is calculated using the total_collision_cost function, which takes in the robot's

predicted trajectory x_robot and the predicted positions of the obstacles

obstacle_predictions as inputs, and returns the sum of the collision costs between the

robot and each of the obstacles. The collision cost between the robot and an obstacle is

calculated using the collision_cost function, which takes in the predicted positions of the

robot and the obstacle and returns a cost that increases as the distance between the robot and

the obstacle decreases. The collision cost is used to ensure that the robot avoids collisions with

the obstacles as much as possible.

Finally, the total_cost function returns the sum of the tracking cost and the collision cost as

the total cost of the control input u. This total cost is used by the optimization algorithm to find

the control input that minimizes the cost and hence achieves the desired behavior of the robot.

The position of the MAV is then updated using the update_state function, which

integrates the MAV's dynamics forward in time using the computed control input. The MAV's

position at each time step is recorded in the robot_state_history array.

update_state

The update_state function takes in three arguments:

state: a numpy array of shape (4,) representing the current state of the robot. The array has

the form [x, y, vx, vy], where x and y represent the x and y position of the robot, and vx

and vy represent the x and y velocity of the robot.

u: a numpy array of shape (2,) representing the control input for the robot. The array has the

form [vx, vy], where vx and vy represent the x and y velocity of the robot at the next

timestep.



dt: a float representing the timestep duration.

The function calculates the new state of the robot at the next timestep by adding the control

input u and the current velocity to the current position. This is done using the following equation:

new_state = state + np.concatenate((u, state[2:])) * dt

The new_state array has the same form as the state array: [x, y, vx, vy]. It represents

the x and y position and velocity of the robot at the next timestep.

The function then returns the new_state array.

The update_state function can be used to predict the future state of the robot given its

current state and control input. It is often used in conjunction with the compute_velocity

function, which optimizes the control input for the robot to minimize the total cost.

Finally, after the loop is completed, the plot_robot_and_obstacles function is called to

visualize the simulation results. This function plots the positions of the MAV and the obstacles

over time, along with the desired path of the MAV. The filename parameter is used to specify the

name of the file in which the plot should be saved.



Results

For viewing the simulation of results, please click here.

kappa (𝚱)

A logistic function-based potential field can be used as a smooth cost function for path planning
and trajectory generation. The smoothness of the potential field is controlled by the parameter
𝚱, which determines the rate at which the potential field changes as the distance from the
desired path increases.

A logistic function-based potential field is defined as:

φ(x) = 1/(1 + exp(𝚱(x - x_d)))

where φ(x) is the potential field at position x, x_d is the desired path, and 𝚱 is the
smoothness parameter.

If 𝚱 is set to a high value, the potential field will change rapidly as the distance from the desired
path increases, resulting in a steep and sharp potential field. This can lead to more aggressive
behavior, as the control inputs will be strongly penalized for deviations from the desired path.

On the other hand, if 𝚱 is set to a low value, the potential field will change more slowly as the
distance from the desired path increases, resulting in a smoother and more gradual potential
field. This can lead to more gentle behavior, as the control inputs will be less strongly penalized
for deviations from the desired path.

In general, the choice of κ depends on the specific application and the desired behavior of the
control system. It can be tuned to balance the trade-off between smoothness and
aggressiveness, as well as to satisfy any constraints on the control inputs or the system state.

𝚱 = 6 𝚱 = 4 𝚱 = 2

https://drive.google.com/file/d/1ynNkOBnrkDyQNdV-LT7x-XwcpFcyPNjD/view?usp=sharing


Prediction Horizon (𝐇)

The prediction horizon is typically defined as the time interval over which the system dynamics

and the cost function are evaluated. It is used to predict the future behavior of the system based

on the current state and the control inputs. It is defined in the algorithm as HORIZON_LENGTH.

The prediction horizon is typically chosen to be long enough to capture the essential dynamics

of the system, but short enough to be tractable computationally. A longer prediction horizon

allows the control system to react more slowly to changes in the system, but it also requires

more computation and can result in a slower control response. On the other hand, a shorter

prediction horizon allows the control system to react more quickly to changes in the system, but

it may not be able to capture the essential dynamics of the system and can result in suboptimal

performance.

In general, the choice of the prediction horizon depends on the specific application and the

desired behavior of the control system. It can be tuned to balance the trade-off between

computational complexity and performance, as well as to satisfy any constraints on the control

inputs or the system state.

𝐇 = 7 𝐇 = 4 𝐇 = 2



Conclusion and Future Work

In terms of future work, one direction could be to further extend the decentralized NMPC

approach to more complex scenarios, such as multi-MAV formation control and mission

planning. Another direction could be to investigate the integration of the decentralized NMPC

approach with other advanced control and planning techniques, such as reinforcement learning

and Bayesian optimization, to enable more intelligent and adaptable collision avoidance

behavior.
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